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1 Introduction

This is a report about the current status and results of running the NAS kernels in Fortran-8X[8] on a Cray
Y-MP and a Connection Machine CM-2. The NAS kernel benchmark tests[I],[2] are a suite of seven compu-

tational kernels that are representative of numerically intensive codes used at NASA Ames Research Center.

The original NAS kernels are written in Fortran77 (about 1000 lines). Both the Cray Y-MP and Connection
Machine CM-2 used in the experiments are located at NASA Ames Research Center and will not be described

in this report. For descriptions of the Cray Y-MP, see [7] and for the Connection Machine CM-2, see [5].

The version of Fortran that runs on the CM-2 is called CM-Fortran[3] and is a product of Thinking

Machines Corporation. It provides the programmer with a subset of the proposed Fortran-SX language. It

also includes much of Fortran77 with some extensions. If a Fortran program is mn on the CM-2 without

using any of the Fortran-8X construct provided in CM-Forlran, the program will be executed on the front-
end machine without using the CM-2. The front-end machine at NASA Ames is a dual-processor VAX 6320,

with 64 megabytes of main memory. Therefore, to run the NAS kernels on the CM-2 requires converting
them to CM-Fortran 8X constructs.

When using the NAS kernels as benchmarks, not only is the hardware performance measured, but also

the amount of tuning required to run them. Tuning ranges from level 0 ("dusty deck") to level 1000 ("cus-

tomized code"). Since Fortran-8X array operations are required to execute code on the CM, it is considered

customized code. Therefore, we are only interested in the performance that can be achieved while maintaining

the functionality of the NAS kernels.

The cf77 compiler[6] on the Cray Y-MP also supports some of the Forllan-SX constructs, namely the

array section constructs which are also a subset of CM-Fortran. To test the portability of code written in

Fortran-SX, the kernels were converted to use array section constructs and run on the Y-MP and then ported

to the CM-2. After initial porting to the CM-2, the algorithms are modified for efficiency.

In the next section, background on the NAS kernels is presented. Following that, the matrix multiply is
used as an example of initial conversions from Fortran77 to Fortran-SX array sections. Then results from

running on the Cray Y-MP are presented and discussed. Next, porting of Fortran codes to the Connection

Machine CM-2 is discussed, followed by case by case experiences in converting and running each kernel.
A discussion of results is given along with conclusions and suggestions for future work. An appendix is

attached that contains the Fortran-8X version run on the Cray Y-MP. Code for the CM-2 is not included due

to its rapidly changing state. Examples of it are throughout the text of this paper.

2 NAS Kernels

There are seven kernels in the NAS kernel benchmark suite. A brief description of each of the kernels follows:

• MXM: A four-way unrolled, outer product matrix multiply.

• CFFI'2D: Complex radix 2 FFF on a two dimensional input array, returning results in place. FFF's for

each dimension are handled by separate subroutines.

• CHOLSKY: Cholesky decomposition done in parallel on a set of input matrices that are passed in as

one array.

• BTR/X: Block tridiagonal matrix solution along one dimension of a four dimensional array.

• GMTRY: Sets up arrays for a vortex code and performs Gaussian elimination on the resulting array.

• EMIT: Creates new vortices according to certain boundary conditions.

• VPENTA: Inverts three pentadiagonal matrices in a parallel fashion.

Tuning of the NAS kernels is broken down into four levels:

• Level 0, no changes are allowed for performance improvement, only for compatibility purposes (i.e.

the timing function).

• Level 20, minor tuning to enhance performance is allowed (i.e. inserting compiler directives). No

more than 20 lines may be changed.
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• Level 50, major modifications to enhance performance is allowed (i.e. rewrite loops to avoid constructs

that cause difficulties). No more than 50 lines may be inserted or changed.

• Level 1000, customized code to improve performance (i.e. rewriting entire subroutines). There is no
limit on the number of lines inserted or modified.

The test suite has a main routine that calls each test individually. Each test generates its own input, makes

a call to a system timer, performs the test for a specified number of iterations, makes a second call to the

system timer, calculates an error value, the number of floating point operations performed and, how long

the test took and, then reports the information back to the main routine. To generate input values, a random

number generator is included in the suite that requires at least 47 bits of precision.

Errors are calculated based on having generated the correct random sequence and executed the test with

sufficient precision. The number of floating point operations is based on the algorithm given in the source

code and the number of iterations the test is performed. Timing is done by calling a system clock before and

after the test and taking the difference. Performance is measured in MFLOPS.

3 Converting to 8X on Cray Y-MP

Converting the NAS kernels to use the 8X array section constructs was not difficult for most kernels. Con-

version ranged from about 5 minutes for MXM (matrix multiply) to about 1.25 hours for EMIT (creation
of vortices). The only 8X constructs supported by the cf77 compiler on the Y-MP are array assignment and

array section constructs including vector valued subscripts.

An example of the use of the 8X array section construct is replacing
DO 100I=1,20

C(I) = A(I) + B(I)

100 CONTINUE

by

C(1:20) = A(l:20) + B(l:20).

If the range is the whole dimension then an explicit range does not need to be specified, i.e. C(:) -- A(:) + B (:).

If whole arrays are being referenced then C = A + B is sufficient.

A vector valued subscript is the Fortran 8X notation for indirect array addressing. Say the elements of

integer array IV are {1,3,5,2,4} and you want to access array A's elements in that order. The Fortran77 code
would look like:

DO 100I=1,5

C(I) = A(IV(I))
100 CONTINUE.

Using 8X constructs, the code becomes:
C(:) = A(IV(:)).

Often, the code is more compact using the 8X constructs. However, it can obscure what the code is doing if

complex ranges are needed.
The general scheme used in converting from Fortran77 to Fortran-8X is to convert all in the vectorized

innermost loops to array section constructs. The first and simplest kernel MXM (an outer product matrix

multiply unrolled to a depth of four) is used as an example of this process. Fortran77 source code for MXM

is given in figure 1. The converted code is shown in figure 2 and uses two of the 8X array constructs. Array

sections are used to convert the innermost loop, reducing the levels of nesting, and array assignment is used
to initial C to zero.

Results from running the unmodified Fortran77 version of the NAS kernels and from the For_an-8X

version are shown in table 1 and table 2 respectively. As can be seen from the tables, using the 8X constructs

slow the Y-MP down by an average factor of 3.5 over the whole suite. However, some of the kernels mn

virtually unchanged (MXM and EMIT). Others such as CHOLSKY, BTRIX, and GMTRY have slowed down

by a factor of 5 or more.

There is no apparent reason for the slow down. The only changes are the innermost vectorized loops.

For example looking at CHOLSKY (Cholesky decomposition) shown in figure 3, one notes that all of the
innermost loops are DO L = 0, NMAT where iterations of L are independent. Replacing these loops with

array sections, (see figure 4), causes runtime to increase by a factor of 5. At this time, this phenomenon is



SUBROUTINE MXM (A, B, C, L, M, N)

DIMENSION A(L,M), B(M,N), C(L,N)
C
C 4-WAY UNROLLED MATRIX MULTIPLY ROUTINE FOR VECTOR COMPUTERS.

C M MUST BE A MULTIPLE OF 4. CONTIGUOUS DATA ASSUMED.

C DH BAILEY 11/15/84
C

DO 100 K= 1,N
DO 100 I= 1, L

C(I,K) = 0.
100 CONTINUE

DO 110J= 1,M, 4
DO110K=1,N

DO1101=1,L

C(I,K) = C(I,K) + A(I,J) * B(J,K)
$ + A(I,J+I) * B(J+I ,K) + A(I,J+2) * B(J+2,K)
$ + A(I,J+3) * B(J+3,K)

_NUE110
C

RETURN

B_D

Figure 1:Fortran77 version of MXM

110

C

SUBROUTINE MXM (A, B, C, L, M, N)

DIMENSION A(L,M), B(M,N), C(L,N)

4-WAY UNROLLED MATRIX MULTIPLY ROUTINE FOR VECTOR COMPUTERS.

M MUST BE A MULTIPLE OF 4. CONTIGUOUS DATA ASSUMED.

D H BAILEY 11/15/84

MODIFIED:
10/20/89 Eric Barszcz Converted to Fortran-8X

C = 0.0

DO 110J= 1,M, 4
DO110K=1,N

C(:,K) = C(:,K) + A(:,J) * B(J,K)
+ A(:,J+I) * B(J+I,K)

+ A(:,J+2) * B(J+2,K)

+ A(:,J+3) ° B(J+3,K)
CONTINUE

RETURN

END

Figure 2" Forlran-8X version of MXM
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PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM

CFFT2D

CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

1.8085E-13

3.1644E-12

1.8256E-10

6.0622E-12

3.9145E-13

1.5609E-13

2.3541E-13

4.1943E+08

4.9807E+08

2.2103E+08

3.2197E+08

2.2650E+08

2.2604E+08

2.5943E+08

1.5873

7.4697

2.8060

2.4506

2.0594

1.7639

5.3646

264.24

66.68

78.77

131.38

109.98
128.15

48.36

TOTAL 1.9275E-10 2.1725E+09 23.5015 92.44

Table 1:Fortran77 Version of NAS Kernels on Cray Y-MP

THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR MFLOPS

MXM

CFFT2D
CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

TOTAL

1.8085E-13

3.2001E-12
1.8256E-10

6.0622E-12

6.5609E-13

1.5609E-13

2.3541E-13

1.9305E-10

FP OPS SECONDS

4.1943E+08

4.9807E+08
2.2103E+08

3.2197E+08

2.2650E+08

2.2604E+08

2.5943E+08

2.1725E+09 84.2510

1.5785

20.5480
14.5346

27.5411

10.6323

1.7960

7.6205

265.72

24.24

15.21

11.69

21.30

125.86

34.04

25.79

Table 2: Fortran-8X Version of NAS Kernels on Cray Y-MP



beingturnedover to Cray Research Incorporated. It is possible that the 8X constructs are inhibiting some

optim/zation that is normally performed.

4 Converting to 8X on CM-2

Converting the 8X version of the NAS kernels developed on the Cray Y-MP to the Connection Machine
CM-2 is not straight-forward. When the project started, the version of the CM-Fortran compiler available

was Beta Version 0.5., which had a number of deficiencies. The major ones effecting the kernels are listed

below. The original plan for the project was to test the kernels on the CM with the minimal amount of changes
necessary to get them to run correctly. After that, make modifications to the algorithm for efficiency purposes.

Unfortunately, even compiling them was a problem.

• Complex arithmetic (used in CFFr, GMTRY, and EMIT) is not supported.

• Declaration of arrays with negative indices (used in CHOLSKY) are not supported.

Other points to take into consideration while programming the CM are the following:

• Any COMMON containing a CM-resident array must be part of the MAIN routine.

• Routines are compiled completely independent of each other.

• The LAYOUT and ALIGN compiler directive are not fully functional.

• The compiler optimizes out multiple SUBROUTINE calls with empty parameter lists.

In order to have a calculation performed on the CM, the values must be contained in a CM resident array.

There are three ways an array can become a CM resident array. First is to use the array in an 8X construct.

This is easy and most robust. Second is to use the compiler directives LAYOUT or ALIGN. With LAYOUT,
you specify whether each dimension is NEWS or SERIAL. NEWS implies it is spread along a NEWS axis

(performed in parallel) in the machine. SERIAL implies the dimension is packed within a virtual processor
(VP) set. Any array that has a dimension defined to be NEWS is a CM resident array. If all dimensions are

declared to be SERIAL, then it is a front-end array. Version 0.5 of the compiler does not support mixed NEWs

and SERIAL LAYOUT directives. The third way is by using COMMON. Any COMMON that contains a

CM array must be included in the MAIN routine when it is being compiled. Space for the array is allocated on

both the CM and the front-end. CM-Fortran does not currently support automatic array migration between
the front-end and CM. There are compiler directives that specify that a named COMMON is a CM only

COMMON to prevent allocation of space on the front-end.

How the location of the array effects the programmer is when passing arrays to subroutines. If the calling

routine has the array defined as a CM array but the called routine never uses the array in an 8X construct then

the compiler treats it as a front-end array with no compiler warnings. When the code is executed, it will abort.

An example where this could happen is in figure 2. Assume arrays A, B and, C are all CM resident arrays

in the calling routine. When MXM is called, array B will be considered a front-end array by the compiler

because it does not satisfy any of the three conditions to be considered a CM resident array. Recall each

routine is compiled independently.

Part way through the project, Beta Version 0.6 of the CM-Fortran compiler arrived. It is more robust than

the Version 0.5 and supports complex arithmetic and mixed NEWS/SERIAL LAYOUT directives. Other

problems exist that are related to the global optimizer.

• Multiple function calls with empty parameter lists are optimized out (erroneously reported as fixed in

Release Notes Version 5.2-0.6[4].

• Complex arithmetic gives poor or incorrect results.

• Compiler switch '-double.precision' causes some fields to be overwritten.

Other bugs have been reported to Thinking Machines Corporation (TMC) and are still unresolved. Bugs

pertaining to individual kernels will be discussed on a kernel by kernel basis. In the following sections, each

kernel is discussed describing what was done, bugs encountered and known workarounds.



SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B)

C

(3 (3HOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.

O

C 11/28/84 D H BAILEY MODIFIED FOR NAS KERNELTEST

C

REAL A(0:IDA, -M:0, 0:N), B(0:NRHS, 0:IDB, 0:N), EPSS(0:256)

DATA EPS/1 E-13/
C

C CHOLESKY DECOMPOSITION

C

DO1J=0, N

10 = MAX (-M, -.J )
C

C OFF DIAGONAl., ELEMENTS

C

DO2 I =10,-1

DO 3 JJ = 10 - I, -1

DO 3 L = 0, NMAT

3 A(L,I,J) = A(L,I,J) - A(L,JJ,I+J) * A(L,I+JJ,J)

DO 2 L = 0, NMAT

2 A(L,I,J) = A(L,I,J) * A(L,0,1+J)
C

C STORE INVERSE OF.DIAGONAL ELEMENTS
C

DO 4 L = 0, NMAT

4 EPSS(L) = EPS * A(L,0,J)

DO 5 JJ = 10, -1

DO 5 L = 0, NMAT

5 A(L,0,J) = A(L,0,J) - A(L,JJ,J) ** 2

DO 1 L = 0, NMAT

A(L,0,J) = 1. / SQRT ( ABS (EPSS(L) + A(L,0,J)) )1

(3

C SOLUTION

C

DO 6 I = 0, NRHS

DO7K=0, N

DO 8 I.. = 0, NMAT

B(I,L,K) = B(I,L,K) * A(L,0,K)

DO 7 JJ = 1, MIN (M, N-K)

DO 7 L = 0, NMAT

B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K)

DO6 K=N, 0,-1

DO 9 L= 0, NMAT

B(I,L,K) = B(I,L,K) * A(L,0,K)

DO 6 JJ = 1, MIN (M, K)

DO 6 L = 0, NMAT

B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I,L,K)

Figure 3:Fortran77 version of CHOLSKY



SUBROUTINE GHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B)

G

O GHOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.

G

(3 11/28/84 D H BAILEY MODIFIED FOR NAS KERNELTEST

C MODIFIED:

(3 10/29/89 Eric Barszcz Converted to Fortran-8X

(3

REAL A(0:IDA, -M:0, 0:N), B(0:NRHS, 0:IDB, 0:N), EPSS(0:256)

DATA EPS/1E-18/

(3

G GHOLESKY DECOMPOSITION

(3

DO1J=0, N

10 = MAX ( -M, -J )

C

O OFF DIAGONAL ELEMENTS

G

DO 2 I = 10, -1

DO 3 JJ = 10- I, -1

A(:,I,J) = A(:,I,J) - A(:,JJ,I+J) * A(:,I+JJ,J)

3 CONTINUE

A(:,I,J) = A(:,I,J) * A(:,0,1+J)
2 CONTINUE

C

G STORE INVERSE OF DIAGONAL ELEMENTS

C

EPSS = EPS * A(:,0,J)

DO 5 JJ = 10, -1

A(:,0,J) = A(:,0,J) - A(:,JJ,J) ** 2
5 CONTINUE

A(:,0,J) = 1. / SQRT ( ABS (EPSS + A(:,0,J)) )
1 CONTINUE

C

(3 SOLUTION

G

DO 61 = 0, NRHS

DO7K=0, N

B(I,:,K) = B(I,:,K) * A(:,0,K)

DO 7 JJ = 1, MIN (M, N-K)

B(I,:,K+JJ) = B(I,:,K+JJ) - A(:,-JJ,K+JJ) * B(I,:,K)

CONTINUE

DO6K=N, 0,-1

B(I,:,K) = B(I,:,K) * A(:,0,K)

DOeJJ = 1, MIN (M, K)

B(I,:,K-JJ) = B(I,:,K-JJ) - A(:,-JJ,K) * B(I,:,K)
CONTINUE

RETURN

END

Figure 4: Fortran-8X version of CHOLSKY
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PROGRAM ERROR FP OPS SECONDS MFLOPS

OUTER

INNER

SPREAD

SQUARE
NO OPT

OPTIMIZE

TMC's

1.1650E-06

0.0000E+00

0.0000E+00

5.2117E-06

4.4587E-06

5.2117E-06

4.4587E-06

4.1943E+06

4.1943E+06

4.1943E+06

2.6844E+08

2.6844E+08

2.6844E+08

2.6844E+08

31.5500

64.8200

2.4300

25.5200

8.3100

2.4600

1.3800

0.13

0.06

1.73
10.52

32.30

109.12

194.52

Table 3: Run times for MXM on 8K CM-2 in single precision.

SUBROUTINE MXM (A, B, C, L, M, N)

DIMENSION A(L,M), B(M,N), C(L,N)

CMF$ LAYOUT B(:NEWS, :NEWS)
C

C = 0.0

DO 110J=1, M,4

DO110K=1,N

C(:,K) = C(:,K) + A(:,J) * B(J,K)

$ + A(:,J+I) * B(J+I ,K)

$ + A(:,J+2) * B(J+2,K)

$ + A(:,J+3) * B(J+3,K)
110 CONTINUE

C

RETURN

B',D

Figure 5: Outer Product Fortran-8X version of MXM

4.1 MXM

The first NAS kernel studied on the CM was the malrix multiply. It is a simple problem with O(n 3) parallelism

ff all multiply operations are done in parallel. Restricting ourselves to O(n 2) memory implies there must be

at least one level of iteration. If one starts by compiling the 8X version developed on the Y-MP, the problems
with COMMON and the classification of array B immediately surface. Advancing past those problems, ihe

code will compile and execute correctly.

Table 3 contains execution times for various algorithms to perform the malrix multiply. All timings were
done using 8K processors of the CM-2 using single precision. The first three kernels perform one iteration of

a 256x128 times 128x64 matrix multiply. The last three do one iteration of a 512x512 times 512x512 matrix

multiply.

OUTER is the four way unrolled outer product matrix multiply taken from the Y-MP, figure 5. INNER is

the standard inner product form performing one inner product at a time, figure 6. SPREAD performs all inner

products for a row at a time, figure 7. SQUARE uses the systolic algorithm for matrix multiply based on the

source provided with the release of the CM Fortran compiler, figure 8. NO OPT differs from SQUARE by

using ALIGN directive to overlay arrays B and C on top of A, figure 9. It is compiled without the global

optimization flag. OPTIMIZE is the same as NO OPT but compiled with the global optimization flag turned

on, figure 9. The dramatic effect of the optimizer is seen. TMC's is the low level matrix multiply library

routine provided by TMC that can be accessed from CM-Fortran.

The algorithm used in SQUARE, NO OPT, and OPTIMIZE only works on square arrays. It have been

extended to work on rectangular arrays by the author and has the same performance on square arrays.
As can be seen from the results, the CM is extremely algorithm sensitive. There are three orders of

magnitude between INNER and OPTIMIZE. It also implies that simply porting algorithms used for vector



C

110

C

SUBROUTINE MXM (A, B, C, L, M, N)
REAL A(L,M), B(M,N), C(L,N)

C = 0.0

DO1101--1, L
DO 110 J-- 1, N

C(I,J) -- SUM((A(I,:) * B(:,J)), 1)
CONTINUE

RETURN
END

Figure 6: Inner Product Fortran-8X version of MXM

.

110
C

SUBROUTINE MXM (A, B, C, L, M, N)

REAL A(L,M), B(M,N), C(L,N)
REAL TMP(M,N)

DO 110 I = 1, L
TMP -- SPREAD(A(I,:), DIM=2, NCOPIES=N)
C(I,:) -- SUM((TMP * B), DIM=l)

CONTINUE

RE-[URN
I_D

Figure 7: Parallel Inner Products Fortran-8X version of MXM

10.



C

C

C Skew

C
C

SUBROUTINE MXM (A, B, C, L, M, N)

REAL A(L,M), B(M,N), C(L,N)
INTEGER Forward(L), Back(L)

CALL CM F_COOR DINATE(Forward, 1)
Forward = Forward - 1

Back = -Forward

matrices so Diagonal(A) is in Column 1 and

Diagonal(B) is in Row 1

A = CSHIFT(A, DIM=2, SHIFT=Forward)

B = CSHIFT(B, DIM=l, SHIFT=Forward)
C

C Perform matrix multiplication.
C

C =0.0

DO I=1 ,M
C=C+A*B

A = CSHIFT(A,DIM=2,SHIFT=I)
B = CSHIFT(B,DIM=I ,SHIFT=l)

ENDDO
C

C Shift Matrices back to original positions
C

A = CSHIFT(A, DIM=2, SHIFT=Back)

B = CSHIFT(B, DIM=l, SHIFT=Back)
C

RETURN
EN3

Figure 8: Systolic Matrix Multiply Forlran-8X version of MXM
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SUBROUTINE MXM (A, B, C, L, M, N)
REAL A(L,M), B(M,N), C(L,N)

INTEGER Forward(L), Back(L)
CMF$ ALIGN B(I,J) WITH A(I,J)

CMF$ ALIGN C(I,J) WITH A(I,J)
C

CALL CM F_COOR DI NATE(Forward, 1)
Forward = Forward - 1

Back = -Forward
C

C Skew matrices so Diagonal(A) is in Column 1 and

C Diagonal(B) is in Row 1
C

A = CSHIFT(A, DIM=2, SHIFT=Forward)

B ='CSHIFT(B, DIM=l, SHIFT=Forward)
C

C Perform matrix multiplication.
C

C =0.0

DO I=1 ,M

C=C+A*B
C

A = CSHIFT(A,DIM=2,SHIFT=I)
B = CSHIFT(B,DIM=I,SHIFT=I)

END DO

C

C Shift Matrices back to original positions
C

A = CSHIFT(A, DIM=2, SHIFT=Back)

B = CSHIFT(B, DIM=l, SHIFT=Back)
C

RETURN

END

Figure 9: Optimized Systolic Matrix Multiply Fortran-8X version of MXM
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PROGRAM ERROR FP OPS SECONDS MFLOPS

REAL 1.2566E-13

COMPLEX 4.8710E-08

4.9807E+06 153.5800 0.03

4.9807E+06 180.5400 0.03

Table 4: Run times for CFFT on 8K CM-2 in double precision.

[ THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR FP OPS SECONDS MFLOPS

GOOD CHO 4.2092E-12 1.1052E+06 905.5500 0.00

BADCHO 1.8987E+02 1.1052E+06 783.6900 0.00

Table 5: Run times for CHOLSKY on 8K CM-2 in double precision.

machines probably will not do well on the CM. Vector machines can be thought of as having one dimensional
parallelism. The CM requires two or three dimensional parallelism to mn efficiently or one dimensional

parallelism on the order of the number of processors.

One of the common tricks used in Fortran to generate longer vectors is to redeclare the shape of the array

between subroutines. This is not possible on the CM. An array must have the same shape in all subroutines.

However, the parallelism inherent in the algorithm can be expressed as two dimensional parallelism rather

than one dimensional. There are functions that allow the shape of an array to be changed but they are not

supported at this time.

4.2 CFFT

CFFT is a two dimensional FFT where each dimension is handled by a separate routine. Table 4 contains

information from executing the FFT using real and complex arithmetic. Again, the inner loops are converted

to array section constructs.

With the Version 0.5 of the CM-Fortran compiler, complex arithmetic is not supported. To mn the CFFT

test, all complex calculations are done out in real arithmetic. It has a poor mn time but has a good error

value. In fact, it is better that the Y-MP's. The poor mn time is largely due to performing the FFF in double

precision arithmetic. The CM located at Ames has only single precision hardware causing double precision

arithmetic to be performed in software. Using Version 0.6 of the compiler which supports complex arithmetic,

the error is five orders of magnitude worse than when performed using real arithmetic. The problem was

reported to TMC. It appears the use of the global optimization flag causes a portion of the complex field to

be overwritten. The workaround is to not use the global optimization flag. This can seriously effect the mn

time as demonstrated by the matrix multiply.

4.3 CHOLSKY

Using Version 0.5 of the compiler, CHOLSKY would not compile and mn because arrays are declared with

negative index ranges. This is still a problem with Version 0.6 of the compiler.
After converting to positive index ranges, the code compiles and executes but yields a bad error value.

Table 5 shows the difference before and after the last conversion. Figure 10 contains the code for CHOLSKY

that is causing the problem. It is currently being investigated at TMC.

4.4 BTRIX

BTRIX was compiled and run. It ran for 1.5 hours (performing one iteration) and then aborted with a software

timeout. As of the writing of this report, the cause has not been investigated.

13



SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B)
(3
(3 (3HOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.
(3
(3
C
C
C

11/28/84 D H BAILEY MODIFIED FOR NAS KERNEL TEST
MODIFIED:

11/20/89 Eric Barszcz Converted to Frotran 8X

DOUBLE PRE(31SION A(IDA, M, N), B(NRHS, IDB, N),
$ EPSS(IDA), EPS

DATA EPS/1D-13/
(3

(3 CHOLESKY DECOMPOSITION
(3

DO1J=I,N
10= MtN (M, J)

C
C OFF DIAGONAL ELEMENTS
C

DO 2 1= 10,2, -1
1011=10-1+ 1
DO 3 JJ = 1011,2, -1

CEB .....

CEB These lines generate Correct Results
CEB NOTE: NMAT iterations are Independent

DO3 L= 1, NMAT
A(L,I,J) = A(L,I,J) - A(L,JJ,J-I+I) * A(L,JJ+I-1 ,J)

CEB .....

CEB This line generates INCORRECT Results
C A(:,I,J) = A(:,I,J) - A(:,JJ,J-I+I ) * A(:,JJ+I-1 ,J)
CEB .....
3 CONTINUE

2 A(:,I,J) = A(:,I,J) * A(:,I ,J-I+1)
(3
C STORE INVERSE OF DIAGONAL ELEMENTS
C

EPSS = EPS * A(:,I ,J)
DO 5 JJ = 10,2, -1

5 A(:,I ,J) = A(:,I,J) - A(:,JJ,J) ** 2
1 A(:,I ,J) = 1.DO/ SQRT (ABS (EPSS + A(:,I ,J)))
(3
C SOLUTION
C

DO 6 I = 1, NRHS
DO7K=I,N

B(I,:,K) = B(I,:,K) * A(:,I ,K)
DO7 JJ =2, MIN (M, N-K+1)

DO 7 L = 1, NMAT
B(I,L,K+JJ-1 ) = B(I,L,K+JJ-1) - A(L,JJ,K+JJ-1 ) * B(I,L,K)7

(3

6
C

DOOK= N, 1,-1

B(I,:,K) = B(I,:,K) * A(:,I ,K)
DO @JJ =2, MIN (M, K)

DO 8 L = 1, NMAT
B(I,L,K-JJ+I) = B(I,L,K-JJ+I) -A(L,JJ,K) * B(I,L,K)

RETURN
END

Figure 10: Problem with Fortran-8X version of CHOLSKY on CM.
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[ THE NAS KERNEL BENCHMARK PROGRAM ]

E..O VPENTA 6.4858E+05 10.4400 0.062.5078E+02

Table 6: Run times for VPENTA on 8K CM-2 in double precision.

4.5 GMTRY

GMTRY compiles and aborts during execution. As of the writing of this report, the cause has not been

investigated.

4.6 EMIT

EMIT compiles and aborts during execution. As of the writing of this report, the cause has not been investi-

gated.

4.7 VPENTA

VPENTA compiles and mns. Results are given in table 6. It completes but gives incorrect results. As of the

writing of this report, the cause has not been investigated.

5 Conclusions

Results to date indicate the CM-Fortran compiler is not stable and that the Connection Machine is extremely
algorithm sensitive. Most of the problems have been reported to TMC and they are actively seeking solutions.

The sensitivity of the architecture to the algorithm and lack of common programming language across multi-

processors lead to the conclusion that NAS kernel style benchmarking is not possible for parallel computers.

One possible approach to benchmarking parallel computers is to specify the desired functionality and remove

any code modification restrictions or penalties. However, it is necessary to require that the code be written
in a specified high level language and that the source be made available for verification and use. Along with

the source, an explanation of algorithm choice should also be mandatory. This would provide insight into

programming the machine as well as an efficient algorithm.
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